Path integral contour deformations for noisy observables

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tracking Contour Deformations

We consider the problem of tracking the boundary contour of a moving and deforming object from a sequence of images. If the motion of the “object” or region of interest is constrained (e.g. rigid or approximately rigid), the contour motion can be efficiently represented by a small number of parameters, e.g. the affine group. But if the “object” is arbitrarily deforming, each contour point can m...

متن کامل

Spin Observables and Path Integrals

We discuss the formulation of spin observables associated to a non-relativistic spinning particles in terms of grassmanian differential operators. We use as configuration space variables for the pseudo-classical description of this system the positions x and a Grassmanian vector ǫ. We consider an explicit discretization procedure to obtain the quantum amplitudes as path integrals in this supers...

متن کامل

The Contour Time Path

In this report various aspects of Finite Temperature and Density Quantum Field Theory are discussed. The main point being the calculation of Green’s functions in this context, in which pertubation theory is used. The motivation for calculating Green’s functions comes from their wide application in modern Physics. The techniques that are presented here are used in such areas as condensed matter,...

متن کامل

The Contour Integral Method for Loaded Cracks

An extension of the contour integral method (CIM) for the computation of stress intensity factors for loaded cracks is presented. Numerical solutions of the two-dimensional linear elasticity equations are computed with the p-version of the generalized finite element method. Polynomial enrichment functions as well as enrichment with near crack tip asymptotic expansion are used. The robustness of...

متن کامل

Observables of the generalized 2D Yang–Mills theories on arbitrary surfaces: a path integral approach

Using the path integral method, we calculate the partition function and the generating functional (of the field strengths) of the generalized 2D Yang-Mills theories in the Schwinger–Fock gauge. Our calculation is done for arbitrary 2D orientable, and also nonorientable surfaces. e-mail:[email protected] e-mail:alimohmd@@netware2.ipm.ac.ir

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review D

سال: 2020

ISSN: 2470-0010,2470-0029

DOI: 10.1103/physrevd.102.014514